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- Atienuation of Oscillatory Pressures in Instrument Lines
R e " By Arthur S. Iberall

- :A.theoretical investigation has been m

- sensitive element.

An elementary theory based on incom

The elementary solution is then modified to

. amplitudes; appreciable fluid acceleration; and finite length of tubing (end effects). Acceunt

is taken of heat transfer into the tube.

The complete theory is derived in an ap
L e e .graphs in & form convenient for use in compu

.+ oscillation in a transmission tube.
PR 1. Introduction -

* In'many industrial pl’focessés, it.is necessary to
know or to utilize the pressure at one or molé
points in a fluid conduit. It is not always possible

to connect an instrument directly into the conduit
at those points. Instead, recourse must be had to

remote indication or control.. In the case that &

fluid is used for' transmitting the pressure, it i
often of interest to the designer or user of suc

‘systems to know their:response to- variations f

pressure. At the present time, the only solution
easily available to the engineer is generally based
on an elementary theory that considers the system
as equivalent to an R-C electrical network. (See,
for example, NACA Technical Note 593, Pressure
drop in tubing in aircraft instrument installations,
by W. A. Wildhack.) The main defect of the
theory is that it does not provide criteria for the
limits of iis applicability.

In the present paper, a relatively complete treat-
ment is given for the transmission of oscillatory
pressures in tubing. Primary consideration is
given to simplifying the design of high-quality
transmission systems for relatively low frequencies.

The elementary solution is derived and then
extended to apply for oscillutory pressures that are
an appreciable fraction of the absolute mean
pressure, for appreciable frequencies of oscillation,
and for tubing short enough to require end cor-

' This work was supported by the Office of Naval Rescarch under a project
on “Basic Instrumentation for Scientific Research.”
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: ade of the attenuation and lag of an osciilatory
_pressure variation applicd to one end of a tube, when the other end is connected to a pressure-

pressible viscous-fluid flow is first developed.
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take intc account compressibility; finite pressure b |
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pendix. The results are summarized in eight 14
ting the lag and attenuation of a sinusoidal  C) . §
rections. The effect of heat transfer in yingg %

the oscillatory response of the tube is also dis$ { N
cussed. '

The chief utility of knowing these corrections is
that it permits the designer to choose the size of
tubing for specific applications with greater con-
fidence than can otherwise be cone.
~ In the next section, the elementery theory of
transmission lags is developed, and the corrections
are discussed. The complete theory is presented
in graphical form for the convenience of the de-
signer. A number of examples of the use of the
design charts are also given. This section is then
followed by a mathematical appendix in wkich
the more exact results are derived. All math-
ematical symbols used in this paper are defined in
section IT and also when they are first used.

1. List of Mathematical Symbols

A=tube area.

C=velocity of sound.

D=inside diameter ~ tube.

E=-elastic modulus of tube;

F=correction functions.

K=thermal conductivity of fluid.

L=tube length.
M=mass flow.

N:=dimensionless parameter of fluid regime.
Q=volumetric flow. .
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- R=a volume ratio.
" R,=Reynolds number.
T=absolute temperature.
V=instrument volume.
b= compresgibility factor for liquid.
¢=any arbitrary constant.
c,=specific heat of fluid.
f=seny arbitrary function.
» =8 Bessol fanction argument.
_h=1 Bessel function argument.
. k= compressibility-of a liquid.

" l=entrance length. . :
m=-exponent of “polytropic” expansion in in-
" strument volume. ,
n=—exponent of ‘‘polytropic” expansion in tube.

p=Dressure. o
‘g=tube wall thickness.
t=time. S
u=—=axial velocity.

z=nxial distance along tube.

- y=a.dimensionless axinl distance variable.
2—dimensionless parameter of fluid regime.
y=ratio of spacific heats.
5=phase angle.
n=density ratio.

A=time constant.

p=fluid viscosity.
y=kinematic viscosity.
t=fractional pressure cxcess.
p=fluid density.

o==Prandtl number.
¢=velocity potential.
x=attenuation factor.
J=asattenuation parameter.
w=angular {requency.

III. Flementarv Theory

Ficare 1 is 8 schematic drawing of the system
that will be discussed throughout the paper. A
tube transmiis fluid pressure from & conduit to
a pressure-sensitive instrument. The conduit
anplies an oscillatory (sinusoidal) pressure to the
entrance of the transmissivu wbo.,  2he iuve,
which transmits the pressure, is characterized by
o constant cross-sectionsl area and its length.
The pressure-sensitive instrument, which receives
the pressure, 18 characterized by its enclosed
volume. It is assuraed that il the walls enclosing
the instrument volume sre flexible (cither elastic
or piston-like), the enclosed volume can be re-

placed by & larger equivalent rigid voluzne that
will store the same mass of fluid per unit pressure
change. It is further assumed that tho pressure-
gensitive inst-ument wili be so chosen that its
indication is independent of the frequency of
expected pressure oscillations.

_In deriving the elementary theory, it is assumed
that Poiseuille’s law of viscous resistance holds ai
each point i the tube; that the fluid is incom-
pressible in tae tube; that the sinusoidal pressure
oscillations st the beginning of the tube are of
small amplitude compared to the mean sbsolute

- pressure; and that, if the fluid is a gas, it expunds

and contracts isothermally in the instrument
volume. ‘ :

-

[ T

1
p < L ‘.._.._j

—.

i 2 3

Figure 1. Schematic diagram of a fluid tramsmission
system (I-condust, p.tranamission tube, S-pressure inslru-
ment).

p=py+Dp cos o,

The same assumptions applied to an incom-
pressible fluid (e. g., & liquid) lesd to the concluston
that there is no loss in amplitude or lag in & liquid-
filled system as a liquid would not expand or
contract in the instrument volume.

We may write

2 128 N
L ()

for Poiseuille’s law, and

M %
] @

for the equation of continuity. Here
p=instantaneous pressure at eny point in
the tube
r=distance along the tube mesasured from
its entrance
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po=mean fluid viscosity
D=tube diameter
oo Qu=volumetric flow at'dny point in the tube
<" g iuingtantaneous density at any point in the
IR .-.‘ tube ot oi e . .
4 :M=mass flow at any point in the tube
© -uliniy A= cross-séctional area of the tube
t==time. ‘ o
We infer from the equation of continuiiy and
the assumption that the fluid s incompressible in
the tube (i. e., Op/dt=0) that the mass flow, and
thereioro the volumetric fiow, does not vary along
the tube, but at most varies only with time (the
fluid motion is piston-like)..
+ By differentiating eq 1, we then ohtain

T o

- ;""; B '5;2'_*0 ( . ®3) ‘

along the tube. U
Our boundary conditions are that at =0

p=po+Lpe™, 4

' .a sinuscidal pressure variation about the mean
pressure, and that at z=L

Yoy
Q_—Po ot
{5)
2p_ 128 1w o
o x

The first line of eq 5 expresses the rete at which
a compressible fluid entering & rigid volume builds
up pressure, whereas the second line of eq 5 states
that the flow into the volume is limited by the
pressure gradient at the end of the tube. Here
p==1ean pressure st the entrance
ap=se.aplitude of the pressure oscillation at
the conduit
V =instrument volume
w=angular frequencyof the pressure oscil-
iation
F=Ilength of the tube.

Tt 4 convenient to introdice a new variable £,
the feactinnal pressure excess, defined as

P~ Po
==t A (‘
¢ Po ©

- Attenuation oﬁi’iﬁiﬁe in,-'l'uﬁéﬁ;‘i' fvi‘- ’.’;?

so that eq 3, 4, and 5 become, respectively,

2
%t-0 @

at =0
Rt ' "f" {8

and at z=1L,

®

where

(10
_ao (LY V.
=32\p) 4L

Here

£ ==fractional pressure excess

¢, —amplitude of the fractional pressure ex-
 cess at the origin (=Ap/po)

X=a time constant of the system.

It is of further convenience to separate the
pressure excess into & part that varies with z and
one that varies with 2.

Let

E= é'ejms (1 1)
where £ is the maximum amplitude of the pressure
excess at any point of the tube.

Our equations then become

Q2 .
a;i-‘—o (12)
at r=0,
E*—‘Et‘y (}3\}
and at x=1L
e AL o)
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The solution of eq 12, which satisfies eq 13 and
14, is ' |

1w(1-3) i
T 1t hewy .

The ratio of the araplitude of the pressure excess
at the end of the tube to that et the beginning of
the tube is then given by

=k (15)

TR
oo 1News |
1 v
"1 XoJ
where
. Xo==AoW. (17)
- Here
£-;=mammum aniplitixdé of the pressure

excess at the instrument volume
xo=2n attenuation factor.

" The real part of eq 16 is the attenuetion in
amplitude of the pressure excess, whereas the
imaginary part is the phase lsg, or

. E_z.\=_,_',l
&~ 1+ (18)
tan 8o==Xo,

where 5, is tho lagging phase angle.

We will regard eq 18 as the eleraentary solution
of our problem. It indicates that a transmission
system is characterized by a time constant My,
whish can be computed from a knowledge of the
dimensions of the tube, the internal volume of
the end device, and b average conditions of the
gas in the tube; and &n attenuation factor xo, for
each sngular frequency, from which one can
compute the attenuation and phase lag in & tube.
The tube dimensions and the instrument volume
{rrnish the analor “o the resistance and capacitanco
of an electrical network.

1 nrinciple, although difficult in practice, from
e imowledge of the response to a sine wave, one
ce obinin the response (9 3qunere waves, gte
function, ete., hy Fourier analysis.

IV. Discussion of Corrections |

“The assumptions made in the elementary theory
gre restrictive, and in the appendix we shall medify
them, one at a time, until finally we arrive at a
complete solution that accurately takes into ac-
count al! first-order phenomena, and partially
tekes into acccunt second-order phenomena.
Complete results are presented in convenient

graphical forn: in figures 2 to 0.
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Figure 2. Amplitude ratio of the fundameidal lEoLltao in
a wolume lerminated tube as & function of a parameter
proportional lo frequency (x o) for various ratios of tnsiru-
ment volume to tube volume (xrixro) with large demping
(2<51).
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TiGURE 3. Phase lag of the fundamental (3o)s in @ volume
termincled tube as a funclion of a parameter proporiional
to frequency (xro) for various ratios of instrument volume
to tube rolume (xpxro) with lar: e ping (251
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Fioure 5. Phass lag of the fundamenial (§0) in a volume
terminated tube as a function of a parameter proporiional
to frequency (xro) for various ratios of instrument voltime
to tube volume (xi/xre) and for two values of specijic
heat ratio (v) with intermedwsle damping (3=28,25).

y Yl — ey ymd,

wye

¥raurn 7.. Phes: lag of the fundamenial (30) in a volume
terminated lube as a function of a paramesler propertionnl

to frequency (wL/C) for various rafior of tnstrument -

volume o [ube volume (xy/xr) indicaling the difference
between no damping (lyxre/16)%=0) and amall damping
(rxse/16)%==1) for two values of apecrfic heat ratio (1)
with small damping (22 100).

Y Lo, Y G, Forcurvedllw-\/ x"’-l for solid ;tulm

Xro
linea —J‘.{eﬂ_o_

Froure 8. Hedative amplitude of the double harmonic dis-
{ortion ([cu,/ olo/Zo) 1m a volume lerminated tube as a func-
tion of a parameler proportional to frequency (xr) for
various ratios of nafrument vnlume o tube volume (xro/x o)
with large damping (251). '
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Fiaurs 8. Phase lead (as measured on the fundamental fime
acule} of the double harmonic distortion (5))g in a volume
Lerminailed {ube as a funclion of a porameier propertional
to frequency (xro) for various rolios of snstrument volume
tn tube volume (xr/x ) with large damping (2<1),

The factors that must be taken into account
are: : :
1. Compressible flow in the tube. The effect of

Arr A

i ma

y ] N O e W S S S
UL CARQPIGOOIVIMYY I3 W Iluvauvs & Uil Gori- -

b P . | S

— -stantand corresponding witenuation factor (Ay, xr)
depending. on the tube volume in addition to the
oncs dépending on tha instrument volsme. (The
time constant and attenuation factor depending
on the luslruineni volume will be referred to as

-3r-aid-x; henceforth instend of X, and %), In
terms of the electrical snalog, the tube volume
represents a distriouted capacitance in addition
to the equivalent capacitance of the instrument
volume.

2. Finite pressure excess. Tho effect of the ap-

plication of a finite pressure excess to & compress-

ible fluid in & transmission tube is to introduce
harmonic distortion and to medify the mean pres-
sure. However, the attonuation of the funda-
mental is essentislly indopendent of the magnitude
of the pressure axcc{;s_s. The percentage of distor-
tion is approximately proportionel to the applied
pressure excess.

3. Fluid acceleration. 'The effect of fluid inertia
is to modify the time constants of the system.
Both the attenuation of the fundamental and the
magnitude of harmonic distortion are affected. A
dimensionless parameter z analagous to the Q"
of an electrical systermn characterizes the fluid
regime and detormines whether fluid inertia may
or may not be neglected.

When flnid inertia is negligible. a transmission

80

tubo acts like a highly damped system: when fluid
inertin is large a transmission tube scis like an
undainped systom, and elementary acoustic theory
is applicablo.

4. Finite length of tubing. The effect of fluid

acceleration at the ends of the tube results in

further distortion of wave form, which must beo
taken into account in short tubes.

5. Heat conduetion. If thers were ne heat trans.
for from ouside the tube o ingide, ilie osciilsiory
processes would take place adiabatically; if there
were perfect heat transfer into and through the
tubs, the processes would take place isothermally.

~-The affact of finite heat conduction is to make the
real process oceur in between these extremes,
although in a rather complicated fashion. At low
frequencies the process mmny be regarded ns
isothermal.

Although an exact result is given in the appen-
dix, it is advantageous to utilize the thermody-
namic equation of condition, discussed in the
following section, for elucidating the problem of
ettenuation in tubiig, - . -

V. Thermedynamic Equation of Condition

~ In the case of aun osciilatory variation of fluid
“flow, tho equation relaiing ihe thermodynamic -
parameters-of -the fluid lie- between the adiabatic
and the isothermal equations of condition. For
high frequencies, as i sound waves, it is well
known that the adiabatic equation hoids. How-
ever, for viscously damped motion, the adiabatic
relation is not, in general, attained.

For a gas, we assume and justify in the appendix
the processes can be described as “polytropic”,
that is, characterized by a constant exponent n,
in the expression “

=cp"
? } 19)
I+E=y"
with
15(n|=,
whore
n==exponent of the '‘polytropic’’ expansion in

tho tube
y=ratio of specific heats
7=density ratio (p/p,)
po==nverage density in the tube.
¢ 18 used to indicate any constant.
Tho viscosity of gases is independent of the
pressure, and, as an approximation, proportional to

Journal of Research-
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the abselute temperature. (The miwore rigurous
approximation is that the viscosity is proportionsl
to [T]*/[1+¢/T] but over a small range this can
ba approximated by the temperature to a power
closetoone. For example, for air at room tempers-
ture, a power of 0.8 fits experimentsal data quite
wall. The difference from unity is unimporiant
for our purpose.)
Therefore,
‘:176”1

' {

“_

‘_‘_ e 114

w
follows from the gas laws and eq 19. Here uis the
instantaneous fluid viscosity. and T'is the absolute
temperaturs,

Equations 19 and 20 thus oXprees the vmat)on
of viscosity, density, and pressure in e polytropic
process in a gas. At low frequencies, the poly-
LTGpic exponond Miay DO YaKon &4 GYUM Lo BRIl

Tase Rsddda H

L | A I )
TR

T A QK AR MR) YWY R SOOKSRET  VXEWH Sqmarvires wa

condition in & polytropic process is given by
' ' p=actops, o

where BT

- 1sinjaYy.

~ For liquids, bowever,' x lies 8o clore to unity

that we may zatisfactorily sssume ne=1.
Equation 21 can then be written in the form

7 =1+, (22)

' where b=a compressibility factor (=kopo)

ko=liquid compressibility at average condi-
{iona in tha tube.

The variation in viscosity of a liquid over a amall

range of temperature cun be neglected, so thet in a

polytropic process
=, (23)

Actually the implication in eq 22 and 23 is that
i 8 liquid-flled transmission line, the effect of
conditions sppreciably different from 1sot!mrmal
is neghg;h]e

It is also necsssary to take into acrount heat
exchange at the pressure clement.

For an isothermal process with & gas in the
matrunent volume, we previous)y arsumed that

Vo .
i ()

Attgnuation of Pressure In Tubes

ey

represents  the influx of fluid. If, instead, a
polytropic process in the instrument ig assumed,
characterized by an exponent, m (the heat ex-
change may differ in the tnbe and instrument
volume so that # is not necessarily cqual to n),
then eq. 5 should be modified to

V op
Q 771'1:'-’ % (24)

(25)

for liquids.
If the fluid is regarded as a spring, the exponent

~ of the polytropic process for & gas, or the com-

pressibility of a liquid may be viewed as quanti-
ties that make the fluid spring stiffer in the case

of gnses, or almost inﬁnitoly stiff in the caso of
Louids, Tt is choawn in tha annendiv that thaeca

ll\{u g e ———
revnmanta mndife tho f3mma an
r’\lv Ulv‘ll\; UA'IULIVIIIO MIWIIJ VALY VAARIW L woa0o

the tu‘be and volume.

\f.l.. \-'Jﬁue.[ul rIUbﬁuu;e, wnu mum‘.ﬂed,
CD"“"!.‘._““‘" "'rnn Ad Pr rEsanYs

The 'compumtion of the attenuation and phase

lag at ona and of & transmisaion tuhe of & sinysoidal
pressure variation imposed at the other end can be
carried out with the aid of figures 2 to 9, These
ﬂgures sre based upon the theory largely developed
in- the appendix. - ‘The computaiions are made
primarily for the atienuation at the fundamental
frequency. An estimate of the distortion arising
from finite input amplitudes with high damping
is made in the appendix. The computation for
the first harmonic i the distorted output can be
made with the aid of figures 8 and 8.  An outline
of procedure for making computations follows,
1. Compute
D?w

e= (26)

a dimensionfess parameter of the fluid regime'that
characterizes the amount of demping present.
Yhen this parsmeter is less than 1 (large damp-
ing), use figures 2 and 3; when greater than 100

(small dampmg), use figures 6 and 7 or infer.

91
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mediate values of thia parameter, use figures 4 gnd
3 88 an aid to interpolation,
2. Compute the attenuation factors

__22u0 [LN\?
X 1 _V_)
X-romm Ar ) (28)
for a gas, or
=3¢ L /‘?;\‘i /1 I‘}O»m}}_‘?_l _{'\ 20
s (5) (4852 5 ),
XV 1 @0)

XTO=ZZ(1+&§&"‘;IE§);

for & liquid. These quentities, xy, and xy, are

factors based on the tube volume and instrument

volume, respectively, The zero subscript means

that they are values for the cass of large damping,
3. Compute the input pressure excess

. Do
4. For values of = leas than 1, entar fzurs 2
With xro 80d xw/xre to find the amplitude ratio
foz/Ealo and enter figure 3 to find the lagging phase
angle (Sojo. . _
4b. Tha onthud nreagure awesss iz then P

puted from

P @1)

=t 2. 52

H473

8a, For values of 3 greater than 100, compute -

L [exre :
90'-[ 8 |’ (33)
Xl e X1

Xz V(XW @4)

For liquids, assume y=1,

The quantities x; and xr sre the sattenuation
factors for the case of low damping. With low
damping, it is convenient to use the dimensionless
parameter wL/C, which is proportional to fra-
quency, as tho indopendent variable,

5b. Enter figure 6 with oL/C and xi/xy to find

the amplitude ratio |fp./t| and enter figure 7 to -

find the. lagging phase angle &. It i NeCERsAry
to estimate the nhase angle by interpolation. For
very small values of xp compared to 1, the lagging
phass angle is zero up to the first resonance, In
figure 7, curves have been presented to indicata

Ya

the phase angle for [yxo/18]"?==0 and Pyxro/ 1614221
One may lincarly interpolate between these curves
on the basis of [yxr,/16]"2 for values Iying batween
0 and 1.

6a. For values of z lying between 1 and 100,
one may interpolate between the values of- ampli-
tude vatio and lagging phase angle obtained in
step 4a and those obtained in step 5b by the use
of figures 4 and 5. Eater figures 4 and 5 with »_
and yefxre to find the amplitude ratio l%az./fo[ and
lagging phase angle &. 'These are the values for
#=6.25. Inorder to interpolate, plot a logarithmic
graph with 2 as abscissa and the amplitude ratio
or phase angle as ordinate. Plot the velues from
step 4a at z=1, from step Ba at 2=6.25, and from
step 5b at 2z=100, draw a curve through these
three points, and interpolate on this curve for the
intermediate value of 2.

L. Computation of Double Frequency Distortion

1. This computation represents only an opsti-
mate of the douhle frequency distortion and is
strictiy valid only for values of z less than 1.

Compute xz and xr/Xm. Enter figures 8 and .
9 to obtain the relative amplitude ratio |f/e/te
#nd nding phase angle G, for the double fre-
quency wave. The leading phase angla ia mana-
urad on the time scale of the fundamental, where
both the fundamental and double frequency waves
are aosine tarma, ,

2. Compute th pressure excess of the double

'l

frequency | &y, from
e '-I:Z’mlo=(§1‘o )053- - (3%)

The various guantities in the abova aaction are
defined below:
mo=mean fluid viscosity.
vo=mean kicemstic viscosity.
Po=mean fluid pressure,
P.=embient pressure exteriial to the tube.
Ap=amplitude of the applied sinusoidal pressure.
&==applied fractionsl pressure excess.
EoL=pressure excess of the fundamental at the
instrument, volume.
&iL=pressuro excess of the double frequency at
the instrument volume.
do=Ingging phaso angle of the fundamental at
the instrument volume.
é;==leading phase angle of the double frequency
at the instrument volume.

§i
b
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k,=mean fluid compressibility.

V—equivalent rigid internal volume of the
instrument. g .

A=internal cross section of the tube.

D=internal diameter.of the tube."

'j § o * " g=wall thickness of the tube (assumed small
T compared to the diameter). '
g E=eclastic modulus of the tube material.

L=length of the tube. "
- C=velocity of sound in the fluid.
y=ratio of specific heats of the fluid (assumed
to be one for liquids). - :
m=coefficient of the polytropic process in the
instrument volume.. (In lisu of other
information, it may be assumed to be
one.) - .- e ‘
2=dimensionless parameter characterizing the
. fluid regime. |
'~ w=angtlar frequency applied. .
xr=attenuation factor based on the tube
- - volume. ' -
xr=attenuaticn factor based on the instrument
volume.

Subseript T refors to paramotors based on tube
volume; subscript I refers to parameters
based on end volume; O or 1 following &
T or I denotes the fundamental or first
harmonic; an end subscript of 0 denotes a
value for the case of large damping.

The attenuation of the fundamental may be

validly computed from the formuias developed in
this paper when

Yo

op<!

Yo

=<1

(36)

The second Lrmonic distortion, which was only
estimated approximately, may be validly con-
puted from the formulas developed when

wD?
2=E<1’ @D

and when the applied pressure amplitude is suffi-
iently small at the applied frequency to permit

. jaminar flow. 3. Comprte the mean pressure in
the atrument volume, which is larger than the
iner - pressure ab the tube enirance by

EABLIL — | Lor/ Bl 4

Mnemoationt of Pressure in Tubes

A - 5T -0

2. Examples of Computations

The calculation of attenuation by the gereral
procedure outlined above will be illustrated by &
number.of examples. ‘ : ,

(a) What is the longest lougik of ¥e-in.-inside-
diameter tubing that can be used to. trarsmit air
pressure to & Bourdon pressure gage (equivalent
internal volums zssumed negligible) up to a fre-
quency of % ¢fs with & loss in amplitude not
grester than 25 percent? What will be the double
frequency distortion? For air assume Ho==2X1074
poise, »=1/6 stokes, m=1, v=14, p,=10°
dynes/cm? (atmospheric pressure), angular fre-
quency w=r. ‘

Using eq 26, z=1.1 (computed in consistent
units). This value is sufficiently close to unity te
permit_the use of figures 2 and 3. Enter figure 2
with |Eoz/t0le=0.75 and xr/xre=0, since the in-
strument volume is negligible, to find xz=2.1.
Compute L in eq 27 to be 160 feet.

Entering figure 3 with xr=2.1, to find that the
maximum phase lag will be 53 degrees.

Entering figure 8 to find that tho relative ampli-
tude of the double frequency |£i/folo/bo==0.35.
For initial pressuro excesses of 0.1, 0.3, and 1,
respectively, the double frequency amplitude, rela-
tive to the input amplitude, will be 3%, 10%, and
35 percent, while the mean pressure will increase
0.0010, 0:010, and 0.11 of an atmosphere, respec-
tively.

(b) What lengths of 0.1-in.-inside-diameter tub-
ing (nominally ¥e-in.-outside-diameter tubing) can
be used for quality transmission of air pressure for
frequenciés up to 1, 10, 100, 1,000 ¢/s inio pressure
instruments with equivalent rigid volumes of 0.1
and 1in’%?

We will define quality transmission as that in
which there is no more than =:5-percent change
in fundamental amplitude or more than =307
phase shift (whichever is more stringent).

Assume that p=2107* poise, »=1/6 stokes,
m=1, y=1.4, D=0.1 in., A=0.0079 in? Po=10°
dynes/cm?, p,=0.0012 g/cm?.

We will calculate for cach frequency separately.

b (1). f=I1c¢/fs:
Using eq 26, 2=0.61; thercfore, use figures 2
and 3.

Assume AL= o, therefore, by eq 23, x10/x70=0.
Enter figure 2 for |for/Eel0=0.95 to find xro=
0.80.
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Enter figure 3-for. (3)p=30° t0 find. xro=1.1;

~ use 0.80 since it is more stringent.

“Qaleiilate Lfrom eq 27 to be 450 i in.
+ Calouldte ‘AL to be 3.5in.?

Compute xn/xsefrom eq 28 to be 0.029 forV—-O 1

ind} 0.20'for V=1'in?

" .'awwoﬂmﬁ!ﬂ 2:’::% is- mbd"“d n*hmbly for. V=

Olm‘s SR e T

- Therefore, 450 in: -—37 it for V—-O lin?

- Reenter ﬁgure 2 for lfob/fo]o-—o 95 x:a/?ro-
029toﬁndxn=05 o

Calculate Z to be 350 in. —29 ft for V—~1 in}

b'(@). f=1,000 cfe:

- Using'eq- 28, 2=510; therefore, use ﬁgures 6
and 7.

1 Adsume xx/x,- 49 (the lme volume wﬂl probably
A be small). ’

Enf,er ﬁgure [ for |Eoz.l£o|-l 05 to ﬁnd wL/C’-—

' Caleulate L from oq 33 26 ‘and 27 to be O 0661 in.

Calculate AL to be 0.00052in3

Using eq 34, it is seen that xso/xro is greater than
assumed, 80 thn.t wL/C, and therefore L, is less
than'’ the previous estimate. One msay note that
the estimated length will be so small that the
theory essentially predicts that no’ transmission

. tubing at all may be used. ‘In fact, the acoustic

impedance of the entrance orifice into the pressure
instrament or the mechanical impedanc: of the
pressure instrument itself will probably govern the
response at this high frequency

-b(38). f=10¢fs: v

Using eq 26, z=6.1; therefore, use ﬁgures 4
and 5.

Assume AL= =, therefore, xn/xrn=0.

Enter figure 4 with |for/f|=1.05 and y=1.4 to
find XT0=O-12-

Compute L from ~q 27 to be 58 in.

Compute AL to be 0.45 ind.

Compute xrfxro from eq 28 to bs 0.22 for
V=0.1 inf% =22 for V=1 in?

In .1gure 4, xro i8 modified tec about 0.07 for
V=0.1in?

Therefore, L is reduced to about 4 ft for V=0.1
in.?

Buier {igure 4 for |Eor/to|=1.05, and xro/xro=2
to find xry=0.018.

Compnute L to be 22 in. for V=1 int?

Compute AL to be 0.17 in?

(\’nml)uu Xrof o= 6
+ to find x7=0.007.

"A J10r (r‘ ra

[

Compute L to be 14 in.
.Compute AL to be 0.11 in.?
Compute xro/xre=9.

Enter figure 4 to find x70==0.004
Compute L to be Il in,

Compute AL to be 0.09 in?
Compute xm/xm-—ll

In figure 4, xro is8 modified neghgxbly
Therefore L=about 1 {t for V=1 in.?
To check the phase angle, enter figure 5 with
xro/xro=11, and xp=0.005, to find 4°.
b(4). f=100 c/s.
z=861 (interpolation is necessary).
First estimate from figure 6 and 7.

“Assume xz/xr="9.

Enter figure 6 to find wL/C=0.068

Asin b (2), compute L to be 1.5 in.

Compute AL to be 0.011 in.

Compute xi/xr=9.1 for V=0.1 in3; =91 for V=1
m 3

By figure 6, wL/C is negligibly modified for.

- V=0.1in3;

Therefore L 1.5 in. for V==0.1 in3 is our first
estimate.
For V=1 in3, we find again that an extremely

 small tube is predicted, so that the impedance of

the entrance orifice will probably govern.

For V=0.1in2and L=1.51n., estimate [yxr/16]'
to be .01. . _

From figure 7 we find that the phese lag is
negligible. ‘

Compute x7=0.0009, from (8.2) for &=200=.
Enter figure 4 for xz/xr=9 to find [Zor/t)]|=1.00.
Interpolating between |tor/t|=1 at 2=6.25 and
|boz/t0]=1.05 at z=100 for z2=61, we find {For/t|
is negligibly affected.

Therefore L=1.5 in. for V=0.1 in.?

VII. Appendix. Developmeni of the Theory
1. Introduction

The difficultics of deriving, elucidating, and
comprehending the mathematical results of trans-
missien in tubing from & rigorous point of vicew,
have led the auther to treat the problem in & series
of somewhat srtilcial steps. Thus in the previ-
ous sections, the elementary solution was pre-
sented, to give the reader & general view of the
problem, even though meny of the details of the
solution were slurred over. Here steps ore taken,
one at o time, to remove the restrictive assump-

Jorwenal of wo230cmch
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_tions made in deriving the elementary solution.
Nevertheless, a complete solution to the prcblem
. is not obtained. All first-order effects are treated
to the point where the solution is correct to
‘frequencies well into the sonic region. However,
only an elementary treatment is given for the
-sesondsorder distortion; effects. It is felt that
when these second-order effects beccme appreci-
able, the solution presented is of no quantitative
utilit7 to the instrument system designer or user,
"but i3 only indicative as to order of magnitude.

3, Theory Cbnected for Compressibility
(Infinitesimal Oscillatory Pressures)

*"In * this* approximation, - the assumptions - are
Poiseuille’s law of viscous resistance; small frac-
 tionsal pressure excess; and that density, pressure,
and viscosity are related by the equation of
condition. geo Ty e
For gases one can then write

op_ 128 4
: oz - T y“Q’ o
SR
P oz x VFM’

for Pbiseuille’s law, and

M ,op . T L
=4y @
for the equation of continuity.

One can eliminate the mass flow M, to obtain

2 (pdp\ 3202
Dx(p 3:)" D% ot (38)

By virtue of the assumption of small pressure
oxcess, and the equations of condition (eq 19 and
20), we can disregard the differentistion of p/p in
eq. 38, and replace it by its mean value. Equa-
tion 38 then becomes -

O'p_ 32u Op
oxr np,D* ot’

or (39)
Q% 32p, Of

&zt ~mp-DP Of

Utilizing the previous definition of % (eq 19),
e 39 becomes

L3

- Tam o} Peezonre in Tnbes

.or

' (40)
%t Ao o¢
a3 L* dt
where

The significance of the new time constant Xro
can be understood by inspection of the’ definition
of )\ (eq 10). One may note that Ar is & time
constant based on the tube volume, AL, instead
of the instrument volume, V; and that it gives
weight to the exponent of the polytropic process
in the tube. It is thus related to the equivalent
distributed electrical capacitance of the tube.
The weighting by the exponent, z, arises from the
fact that it represents the additional “stiffness”
of the air column in the tube as a polytropic
spring.

If, as in the elementary solution, we separate
our pressure variable into & space and time part

g=fet, (11)
eq 40 becomes

e Apow .z

¢t Ane s
or . 42)

where
Xro=7\row (43)

The quantity xro is an attenuation factor based
on the tube volume.

Equation 42 may be compared with the corre-
sponding equation of the elementary solution, eq12.
It may be noted that it is necessary that xro be
small in order for the elementary solution to be
valid.

Referring now to eq 42, the boundary conditions
are -

at =0
E=£, (13)
and at 2=1L '
dE @ - £
(see eq 5, 9, and 24).
2]
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We may redefine a tlme constant and attenua-
- tion factor for the instrument volume, which takes

" into actount the ‘polytropic process 88

ms (45)
 Sro=Arw '

At :c-L eq 4 therefora becomes

The solutxon to qu2 which satlsﬁes boundary
oonmtlons (eq 13 and 46) is :

_§,= ‘*nwm lho)e “L+e*n(¢n+¢,o)e "’r,
& MYttt Wn=Yn)
where ~ oo

= (l-l-ﬁ
i ] 48)
Wm*—-‘]?@o :

The new y’s,” which shall be referred to as
‘attenuation parameters, are

¥ro an attenuation parameter depending on
tube volume;

Y1 80 attenuation parameter dependmg on the

instrument volume.

The ratio of the fractional pressure excess at
the end of the tube % to thn.t at the beginning
of the tube £, i1s then

Ifrn
™

- VYo
£y ¥ro cosh Y4y sinh ¥ry

It is instructive to examine the limiting values
»f this equation. For small ¢z, the attenuation
approaches

(49)

'g_r“: ! = 1- ) (50)
fo 14+v¥n 1420
the rame result as in the elementary theory

(seo eq 16).
Por small values of ¥y, tho atten_ation ap-
preaches

-vhich for small ¥z becomes

EL 1 _ 1
50 V"'?IO 1 Z__J'
1+ ‘+ 9

(52)

The form of eq 50 and 52 is similar. In fact,
for small values of both Yy and ¥y, it is possible
to define a composn;e attenuaiisa {actor x by the
relation

X= Xm'*‘ %
or [6] {63)

~—— A= \I0+ [6] [

such that the real magnitude of ths attenuation
ie approximately

-

—1
0 ~—-[14‘7(2]”’ .

(18)

which preserves the form of the eiementery
solution.

Equation 18 can be interpreted as meaning that
the “proper” time constant of the system can be
obtained by adding to the n weighted volume of
the instrument, 1/[6]% of the m weighted volume
of the tube, and substituting this in the elementary
formula for the time constant of the system.

In principle, for larger values of Yo Or ¥1, 2
coupling coefficient (of approximately unity) could
be introduced as an addition to the coefficient
1/[6]”%, which would vary somewhat with the rela-
tive magnitude of ¥z, and ¥, to permit strict
preservation of the elementary form. It is, how-
ever, simpler to compute attenuation {rom eq 49.

For liquids, we start from eq 38.

d (p Op\_2320p

Sz\zor )" Dr ot (38)

As before, with the ald of eq 22 and 23, we
obtain the result

%t 32ud DE

dxt pol? ot

0% Ap O

axg LT20 EZE \ (54)
or

At Xgpg .-

—-5 -5 gk i

Tt
e e



Whare AL
o Neo=237 b '
@ ST -V it ~ 55)
. )
Theboundary condition at'2=0'is
aud atz=L" s : SR
B s A .
or R S o (86)
' dE_ L
o TdeT Xy
"where . -
g x,o_xob
. } | (57
x:o'—kmw

(see.eq 5, 9, and 25)

The form of eq 54 and 56 is identical with eq 42
and 46, with the difference that the coefficient in
:the N's is the very small compressibility factor
rather than the reciprocal of the exponent of the
polytropic process. - Physica]ly, this simply means

that the liquid is a spring of almost infinite stlﬁ'—'

ness compared to the gas. . _

Because of the formal identity of the equatlons,
the previous solution holds in toto, with the modi-
fied value of M. The following interpretation is
now possible for the elementary result that there
is no attenuation with liquids. The )\, time con-
stant of elementary theory did not take into
account the effect of liquid compressibility. which
is small. If, however, ), is weighted by b (i. e.,
X=bA,) then the same attenuation curve holds
for both liquids and gases, but with liquids we
smerate on the very beginning portion of the atten-
uation curve for gases.

There is one complication that should be con-
sidered in liquid tube attenuation. Because of the
small compressibility of liquids, 1t is often possible
thit the flexibility of the tube gives rise to a com-
pressibility comparable to that of the Liyuid. The
simplest way of taking into account the flexibility
of the tubc is to define and replace the compressi-
bility fnctor of the liniid hy an effective valon

oond T

e of Pregsire in Tubes ' . N
e Best Available Cu,.,

“where

<3- |,
e’!

“lU

) \58)

°°lt’

"'2
—E‘
0
?;E
' po=mean liquid pressurs;
p,=ermbient external pressure (ucually atmos-
phezic);
E=oclastic modulus of the tubs materiai;
s=wall thickness of the tube.
In the derivation of eq 58, thc assumption has
been made that the thickness of the tube wall is
small compared to the tube diameter.

3. Theory Correctsd for Finite Oscillatory
Pressures

In this section, we will determine the effect of

finite fractionsl pressure excess on the attenua-

tion in & tube. We assume only that the
Poiseuille velocity distribution holds. We will
show that the effect of finite pressure excesses is

to excite higher harmonics, resulting in a distor-

tion of wave form, and to raice the mean pressure

" along the tube. The higher harmeonics are excited

because of the nonlinearity of the equations.

The method of solution selected will be that of
expansion in harmenic series in which the excita-
tion of sum frequencies only are considered and
the difference frequencies are neglected, so that
the solutions obtained are only valid for the lead-
ing term of each harmonic. The second order
term in the variation of the mean pressure will be
estimated separately. We will assume open func-
tions of the distante coordinate for the coeflicients
of each harmonic term of the series and show that
the exparsion is valid for moderate values of the
initial pressure excess. It is obvious that these
distance dependent coefficients must be the
solutions of second-order differential equations
in order tc provide two sets of adjustable con-
stants to satisfy the boundary conditions at the
two ends of the tube. However, by considering
the solution for an infinite tube (for which only
one set of boundary conditions is required) we
shall be able to discuss the question of convergence
of the solutions. ‘

For the purposes in view, it will turn out to be
convenient to derive the equations on a density
basis. Density and pressure are, of course, re-
lated through the equation of condition.



e Y _892)_.3292,
R IR R B a(nbz —IDAot

For gases, we start from
(38)

. By algebrmc mampulatlon, in‘%which eq 19 and

#5220 arerused to .eliminate viscosity and pressure, we

ohtain v ‘ ‘
e e e - ngil '__)\néﬂ :
S a\Nez) ot

HET
EE

or - B (59)

S T ot 2y O :

-a nonlinear partial differential equation. -

* Assume as solution for the density ratio
a=lEme b meelmeit L, (60)

- where #q is the fractional density emplitude ratio

. wof each harmonic. (functions of 2). .. . -

t the moment assume that the applied pressure

.wave has all the mathematical properties necessary

4o make the Fourier expansion of eq 60 valid. We
will discuss this point again. ,

When eq 60 is substituted in eq 59 and tho
coefficionts of like terms in the respective har-
monics equated, the following system of differential
equations result for the coefficients ..

et )

. \ 3 1 42 . ‘, ‘
2 (!PTN) n=3 g? (nan0-+mm =+ noma)

Iy

, . ‘
3 (%“) m=% % (ngno-+nam-+nma +n073)

> (61)
. 3 1 d2 ‘
1(—‘&?) M=3dz2 (nmoFne—mt- -+ +
01741 107¢) |
The cocflicient no(=1) has been added "or com-

pleteness.
Froin eq 61 it can be shown that the coeflicients
2. for an infinite tube are equal to

T

R (L0 L) —
s ']le (1 \/\0__}_1><2[,i_1]l/'})

— ~{» o U/¥
.te (o 1i-21"

‘gtants for each coefficient n4

The solution of these equations consists of 2
compleraentary part that introduces two new con-
and a particular
solution that depends upon the solutious for co-
officionts with lower values of 3. The letier part
represents the excitation of higher sum frequency
modes.

* Detailed investigation of the convergence of the
solutions for the various coefficients leads io the
following conclusions:

The differential equations of eq 61 will admit

‘physically admissiblo and convergent solutions for
- any bounded periodic pressure or density wave

at the origin because (1) either the wave at the
origin has a derivative that is of limited variation,
in which case the solution of eq 59 in series (eq 60)
is always valid; or (2) if it does not, spatial
attenuation of viscous waves occurs soO rapidly
for higher harmonics that the wave will have a
derivative of limited variation at & short distance
beyond the origin, so that as far as effects down-
stream are concerned, the given input wave can
be replaced at the origin by a similar looking
function (i. e., a finite polynomial instead of an
infinite Fourier series) whose derivetive is of
limited variation. As illustrations, we can replace
a square wave by its first few harmonics, or a
Weierstrass function by & smooth integrable
function. In simpler language this means that
in & viscous transmission tube, detailed or sharp
wiggles in the initial disturbance (high harmonics)
are not transmitted.

The more practical question as to the rapidity
of convergence of the series solution for the
attenuation of a given entrance disturbance can
be answered approximately by recourse to the
solution for an infinite tube, for which only onc
set of boundary conditions must be satisfied.

IO L TX2[—27) GXITexX2—2") g (62)

T3

—3 (1 .yt
e~ (=2

(AX0F 11X 2[—317 (@ X 14+2X2[1--3]'") (3><2+3><2[z'—-3]"’)+' o
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where

Y=g ©3)

Here 7 is the constant of integration for the com-

plementary solution of each nq, and y is & dimen-,

_ _sionless; distance variable.
e ~‘Sube€i_tuti‘ng the value of the coefficients from

eq 62 inito eq 60, we obtain the result that, if at the
origin (y=0), the ‘density is written in the form
n=1-+Fe+ )

_The last line in eq 66 contains our desired con-
clusion. We can infer from it the maximum num-
ber.of terms that must be carried siong in order to

‘know the distortion to within any desired ac-

curacy. If we assume, for example, that we are
interested in only those harmonics whose content
at the end of the tube is greater than 1 percent of
the applied first harmonic, we can neglect all
harmonics greater than the one for which

]i—-‘l g—'v('nmm;: 9,01'}

nl

SRS . S | E - -
(7o Tascamr) R e e o
- , > l,’—’-—‘!e ] =0.01.

(58___ Wh_____ 4 . , L im)
- 1X0+1X2{2}'# , ‘ T A . .
e T T e e : ~For most practical problems, it can be shown
G W Nt that adequate information can be cbtained from
AXOFIXALHEXI+2X21™ /" ° 7 a knowledge of the first and second harmonic, and
- IR (64)  rarely, the third harmonic.
B AL . .. To compute the harmonic distortion for a
at any other poiat , the density wave willbe " yolume terminated tube, we go back to eq 61.
pi=14-Fe-Orm e Y The solution for the density wave becomes
(_ﬁ’e_‘(ﬁ_iﬂm)'_ 'ﬁl'ﬁlet'(i"'nlm.)' e”"-‘-:“ . ’ h%lﬂf(ﬂl+e'+"|_ﬂ-’)e~‘+ }
CE B 1><«0+1x?[l]‘,’ } o~ (;’-2+e[2]lnv—-;’:+82’+-7;3._6—[2,_1”'——
ST RS RRs -(l+£a|‘”)v e ' ‘ g \
= los e - .
(me e — S TS AT - (65) "7:{ ) ¥t Ty el —
"'-h?ﬁe"("*'"“")'- ' gt TR +<3_;'Tg—§.3}—- A+
(IXO0+TIX 2N (X 1+2X2{1]')
. . ’ . 3 - {31!
T o Tu(3) 40—

Our previous conclusion permits us to assume
that expression 64 is manageable (i. e., of limited
variation with a time derivative of limited varia-
tior) so that it must converge. We may therefore
infer the following relations:

For large enough %

0< )

ﬁH—l

7t <1

=

l!utl
Nt

= v
USSP
N

~ > (66)
24~
0<|;]-:!<1

|ﬂ!‘5\—ﬂ__i e vin'”?

Ml M

7

tonomeniion of Prosgure in Trbos

: - oo
Fo 5%“[_3_][,%}_) =@M+

3\ ,-waz 7 (32020 a-tar
a—('ﬁ)e Wy W, -——2—[5[]7"1_ Pt AR

- - [(3-—2[2"
s

7 ()enn ()
7

Here 7.4, Ti- represent ihe two sets of integra-
tion constants necessary to take care of an out-
coing and reflected wave in the tube. They are
fractional density excesses. |

We will consider the boundary conditions to be,
for the moment, at 2=0 (y=0)

=14 e/ 4 et - Agee L L (69)

(—=1+02'y
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" where # ié'ﬁﬁd amplitude of each input harmonic

" in the’ density "wave (it differs from- %;, which

“repfesents both: the input harmonic and the excita-

 tion attiplitudes of that-bumOMc), ‘and at
o e=L (y=¥rm) '

"_1+[-m W10 c0sh WN‘?\“N sinh 'Pm] “ + :
3]V ry 00‘81‘1_‘[2]?"’41,‘,-}-2%0 s.l_nh. 210

(212 ¥’ (cosh 2¢my—CO

sh [2]¢/ro)

on Yo On Y

(see eq 1, 19, 20, and 24). )
The application of these two boundary condi-
tions leads to the result that at the end of the tube

)

> (71)

. [2]"re® (cosh 2¢m—cosh (2] 20) + 2o (211" sinh 2¥ro—sinh (217 r) +1
et -

3 (2] 7 008 (2] Wru+ 2o s10B 2 r0)
This result is for a given input density wave.

It will be shown later that the results shown in
“eq 71 are only valid when the equation of condi-
tion ia isothermal (i. e. the “polytropic” coefficient
is unity). It therefore follows that if the input

(Wro cosh Yrot+¥iro sinh ¥o)*

pressure wave is given by
gt -+ et (72)

the wave at the end of the tube is

<, | £=[£ PRET A S "N ] el.l_l_ [2]”2'PT0 :
e '.’.A°_,1lrm;co—sh‘ Yrot+Vro sinh ¥ro ]~ - 2110 cosh [2]"*¥ro+2¥r0 sinh {2]'¥0
© [¥au(cosh 2% ro—cosh[2] Ar) 2 W ro¥n(2]. sinh wm—] (73)
£ 82 sinh {24 ro) + Vi(cosh 2¢m—cosh (2} ¥ ro | ot ..
° | 2(¥r c0sh Yo+ ¥io 8inh ¥ro)®
For liquids, we can start from eq 38 of the square of the amplitude cf the fundamental
~ It can be simply shown that the increase in mesn
o} :
, a(% %‘2 =%2:‘ %%' (38)  pressure at the instrument is given by
By the use of eq 22 and 23, we obtain foAP[1+ | Eor/El]/4
D% 2hpo O ' 4. Theory Corrected for Acceleration
T L ot (59) In this section, we will remove the main re-
where strictive assumption—the assumed Poiseuiile ve-
,\“:{1?1_; b (55) locity distribution. In order to do this, it is

The equation is exactly the same as before with
the single modification that 1/b is substituted for
» and m, so that our previous result (eq 73) holds.

The change in mean density along the tube can
be estimated from eq 59 and 70. The equation
of motion (eq 59) requires that the second deriva-
. ve of the mean square density vanishes, or that
the first derivative is coustant. However, the
end boundary condition (eq 70) requires that the
first derivative of the mean square density van-
iahins at the end of the tube, and therefore along
the entire tube, so that the mean square density
and therefore the mean square pressure must
remain constant along the tube. The leading
nart of the second order change in mean pressure
arises, thevefore, from the steady state portion

necessary to go back to the equations of hydro-
dynamics. Since the complete theory is too ex-
tensive to be treated in this paper, we will simply
state the results. .

It is possible to take the Navier-Stokes equ-
tions of hydrodynamics (the equations of mo-
tion), combine them with the equation of conti-
nuity, and with the energy equation, which repre-
sents a detailed emergy balance among thermal
end kinetic energies, to arrive af the Kirchoff
equations of sound. (See Rayleigh, Theory of
sound, volume 2, article 348.) These equations
are valid to first order. This procedure was fol-
jowed, making no assumption as to the form of
equation of state for the fluid, and the following
results were obtained for the atténuation param-
oter, and the velocity in an infinii¢ tube:
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o 20-0ai(3)
oyt T2 2] g
)= 2.71(»%-
1___ N r
where .. D
s T .D B
g ‘2‘*8‘?’2‘5]-3’.—’2 i
: T =5
hy=0-07% -2%0]
_and.
-(75)

fluid; SRR
gend b are arguments of the Bessel functions for
unit tube radius;
J, and J; are the zero® ard first order Bessel func-
. dons: o
" o is the mean Prandtl number of the fluid

(%)
K, is the mean thermal conductivity of the
fluid; o )
¢v is the mean specific heat at constart pres-
sure of the fluid; -
», is the kinematic viscosity of the fluid

.

—

C is'the Laplacian velocity of sound in the

26-(s7)

The attenuation parameter in eq 74 is to be

interproted as before (see eq 47) 28 the exponent
.

in the form &= &’
‘Equal 84 and 85 are of doubtful value for

| op>1 (76)
or '

%2‘-;‘>1.

These restrictions are violuted st high vecuum
or very high frequencies.

It is instructive ic evsluste eq 74 and 75 for
gmall velues of the Bessci function arguments.
They become :
o (Wr ! 32%%uwvey )

()=t

Q__I_E_QZ
T 128y o )

which are precisely the results assumed in eq !
and 42 under the condition in eq 42 that the
“polytropic” coefficient is unity. This arises
because the value C?/y in eq 77 is the square of
the Newtonian velocity of sound, which for gases

_i8 po/pe- Eq 74 and 75, which take into account

the heat conduction, thus demonstrate that, when
the previous results are valid, the equation of
condition is the isothermal. At higher frequen-
cies the modifying term in eq 74 may be regarded
as the “polytropic” coefficient. To bring this
out explicitly, eq 74 and 75 may be written as

7 Q:
(—,%2—) 1+—p

Vr\  32wrgy
i3

20,(13) B 95;"'
.’:gJo(n'i) )

\

We may regard eq 78 as 81 extended definition
47 ths sttenuation parameter ¥r, and as the
modified velocity that replaces Poiscuilles law.
.o s wrerefore used without the zero subscript,
which in used to denote’ the Poiseuille regime.

If we now Yring in the end boundary condition,

narnely
" %

imve af Pressure in Tuboes
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2, (h3) )
— N &7
) D ( L
(3) Q=—1 % 13 4(h) (78)
J ¥ 128y 01 (h gy
L 8 )
_vee
Q—mPo Dt’ (24)
for a gas, or
_Vbop
Q= D OF (25)
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o for & liquid, we obtain . i
s U g soeiy AV e O e e sl T o
r 'k D)’ h
ol i 128up Vi p | s i B o g
& et | o5 (DY
A r75(r7) ]
foragas,or T | '
. S o r . 3 o
S Y S s,
et 1»2 Ju(h —72.), |
Joraliquid.” oo
TR VL (__hi’)
‘ " 128u VL . 8
Xp= w — (81)
h—DJth—JB_l
o - A\ 2 : 0 . 2 . y
for a gas, or L ,
e DV
1284 VeI | (h—f) '
C128uVw 8
= (82)
| D, D0y !
ngd(h3) B
for a liquid. '

We have thus corresponding extersions of our
definition of x; to cover all frequencies. -The
limiting value of x, for small arguments obviously
becomes the previous value for xj.

Since the only modification has been to extend
thoe definitions of ¥r and ¥; without changing the
form of the equations to be solved (namely eq
42 and 46), the previous result (eq 49) is strictly
velid. The results however are now correct for
frequencies well into the audio range.

1t is not, possible to use the results of this section
to cxtend the range of validity of the calculated
distortion for finite pressure amplitudes. To do
this rigorously would require foing back to the
second-order terms neglected in Kirchoff’s equa-
tions, which is an extremely arduous procedure.

W

S

fills the tube.

[ i )
It must therefore be concluded that the distortiot fi
calculated in section. (3} is valid whenever the % {4
Poiseuille’ regime holds, which also means that o

the “polytropic” coefficient in the distortion must s

be taken s unity. The distortion may be validly _»
calculated from eq 73 when S

| oZ OB
and when the applied pressure amplitude is
sufficiently small at the applied frequency (suf- g
ficiently small enough Reynolds number) to per-

mit laminar flow.
5. Theory Corrected for Finite Length-End Eife;:ts

There is one additional factor that must be con-
sidered. - for completeness—the end effect. An
estimate of its magnitude will be made for the

Poiseuille regime. = It arises from the fact that it
‘takes an appreciable length of tubing to set up
the Poiseuille velocity distribution in the trans-

‘mission tuber The character of the entrance flow
is that the axial velocity is flat at the entrance,
gradually developing an approximately parabolic
(laminar) boundary with & core of uniform veloc-
ity, until the approximately parabolic distribution
, It is evident that boundary layer
theory may be used, and for our purposes an ex-
tremely crude boundary layer theory.

We go back to the equations of hydrodynamics
and make the following assumptions: (1) that the
entrance fiow is incompressible, (2) that the veria-
tion of pressure in the radial direction is negligible
in the entrance portion, (3) that quadratic terms
in velocity are negligible in the boundary layer,
(4) that the core of the velocity distribution is
potential.

For our purposes we need only write the equa-
tions of motion for the potential core as
-, ou, l1ep
E T A v
where u, is the axial velocity in the potential core.

Let

(84)

¢

upzax (85)
where ¢ is the velocity potential
then
Q(3¢p\, 1ou;  10p
a:::( at>+2 3z ooz 0

or (86)
26,1 ,
St+g B+ =r,
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where J@) is. an_?arbit,mry‘funct,ion of time. - -

*fiq (86) represeats. the Bernoulli integral. It

‘can be written in the form : S

PR i‘ ‘?":"«:.‘; : b o ity . . S

v—f‘lv r--“\».vy K N a z’t
pe0+E a0 - 252 @D

N

o ,ifT@é;’lgéhﬁdsry{‘@nditioﬁs;gue'gd prescribed pres-
“sure variation 8t =0, the entrance, with'a flat

 velocity profile:.(8p=T where .U is the average

““Velocity across;the Séction) and ‘s’ parabolic dis-

.

“tribution of -velocity at some point z=1 down-

~ stream (%’=E - The assumption of incompres-

 sible flow makes @ the same at both sections.
- these conditions lead to the result that

i

p©,0=20,0+3 e+ 2 10-250- @9

ot et
If ﬁé.ﬁow rofer to the arguments given in Gold-
stein ‘“Modern Developments in Fluid Mechanics,”
~vol. 1, pp 299 to 308 for the static case, we find
on p. 302 that )

D
2

.
p©=p®+% wT+ T (10575

R,), (89)
£

where R, is the Reynolds number.

It follows from these two equations that the
leading term for the entrance loss in the oscillatory
case is the usual o%? loss. )

We may therefore adopt the exact static result
(see p. 308 of Goldstein) that

/l o
p©,0=p00+2.41 (3 o JH o AT, G0

where the last term represents the Poiseuille vis-

cous resistance.
7 Therefore the effect of the entrance s to cause

a pressure drop given by

N g
3 ame po A
D D=%

Y

~the exact coefficient 1.2 being unimportant for

our purposes. We will regard eq 91, not as being
exact, but as indicating the order of magnitude
of the entrance correction.

" If we subs:itute the Poiseuille velocity into eq

(91) and evaluate the pressure gradient of the
‘Poiseuille distribution from eq (47), we arrive at

the result that the pressure excess just inside the

‘tube & is approximately given by

oy e D (v'/m tanh Yo+ ¥nY .2 250
g =boe™" 32 v \¥ro+ ¥ tanh ¥ro e

I3 %3 )Y
ig2)

Equation 92 is the desired result. It shows
that the approximate effect of the entrance is to
distort each input harmonic. It can be inter
preted as meaning that the effect of the entranceis
the same ag if it did not exist, but with the funda-
mental harmonic generstor replaced by & funde-
mental and & second harmonic generator. The first-
order terms sre thus left unaffected, and the only
equation requiring modification is the attenua*~d
second harmonic.

If eq 92 is used as the input pressure for a pure
sinusoidal input in the fluid conduit, eq 73 becomes

(21" roks

- ¥ro N
=& [wm cosh ¥ro+¥1osinh le] €"'F [5]7 %) 7o Gosh [2)7*¥ro-+ 2¥0 Sinh (2] Wm0

2wt X

sinh [2]"% o) + ¥4 (L= N? cosh 2¢rg— N?—cosh [2]"*¥ro)

[ 3 (1 + N7 cosh 29 r— N3 —cosh [2]¥3ro) +[2]/*¥rofro(2]' 2[1— 7] sinh 20— -] (93)

W ro 6osh Yot Vo Sinh Yro)? 1

+ ..

where
ey
D\ 2/ 94
N2_32 Voh— 8 ( )

M is o dimensionless parameter.

The second term in eq 93 gives the second
harmoenic distortion.

sitecracdon of Pressure in Tubes

Actaally from the condition under which eq 93
is valid (namely eq 83}, the value of N? must be
small, so ihat it is & matter of indifference whether
it is used in eq 93 or not, and we will therefore
neglect it. ‘
6. Summary

There only remains the task of recapitulating
the pertinent results and presenting them for

102
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computational convenience. To -accomplish this
soms minor notational changes will be made.

In eq 49, it was shown that the complex attenu-
ation of the fundamental is given by

. E_O£ ‘!,"‘.T . (95)
& _Vrcosh ¢+, sinh yr

where for is the complex amplituds of the frac-

E__&)a sinh [2]'Ysy) + ¥ (cosh 2¥r
& Jo (21 ¥ r coBhy Yo+ ¥ro ¥ro{[2

. wheis 2 is the complex amplitude of the frac-
tional pressure excess of the second harmonic st
the end of the tube; ¥ro and ¥ are the values of
the attenuation parameter computed on the besis

‘of the Poiseuille velocity distribution.
In eq 76, it was shown that eq 95 is valid if

(67)

< (98)
In eq 48, the attenuation parameters were de-
fined as
‘!‘r’=j7(r
: (09)
Yr=Jx:

in eq 78, 8i, and 82, with slight modifications
for generality, the attenuation facters were deter-
»sined to be most generally

| f&:’?m[\!"n(wsh 2\1’1~o""00511.l [2

tional pressure excess of the fundementel at the i A

end of the tube, and the subseript O refers to the i

fundamental. :
In eq 93, it was shown that the complex ampli-

tude of the second harmonic distortion due to

pure sinusoidal pressure input is given in the form

of its ratio to the input amplitude of the funda-

mental by

I %) -+ 12]' W rodro ([2]'*zinh 2'»«'%""{
—cosh [2]'7 " )]

T 96
NP ®0

r (hg)ﬁ N
~ 8

27, (5)

G h—2->

-1 - (100)

P,
7~ (h%>z -~
8
2, (hg) 1

CRCI

while the attenuation factors for Poiseuilie fow

are

32!’00)

xX1= —Cf—

p)ar

-

321’0(:) L x’

Xro= b
o0 \D/

L
__321»’0(0 (-{";‘)2 __‘;’:
Xn="m"\D/) AL

o~
ok
o
[
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From eq 75 B
22 2[;:]

p’;", (102)
h =(1—J’)D [2,0] | | '

)

’ Here Ciig the velomt,y of sound sppropnate to tho

:tabe;.

- C'r is: thefvelocxty of sound appropxnate t.o the

. mstrument volume.:

For obmputatxonal purposes, ﬂm att,enun sion
{actors:‘can-be*made = less: complicated : by the:

,mtroductlon of two new functlons
Let ‘ :

G ”)

Py (hD)
iy hh—?-Jo(h )

and

N —e:
o t1+(7—}) —Q——-—-Q'j

where F,-and F; ere correction ‘functions to the
Poiseuille attenuation factors.
The attenuation factors then become

w2 (LY,

2 (B

In ovder to obtain consistency with our previous
results, we introduce the following definitions:
For a gas:

it can be shewn both fror kinetic theory and

(104)

frot: oxperimental data that the value of the

Prazil nusaber for a gas is spproximatel ] unity.
Differences from unity are unimportant for our
purposcs  Therefore g and & in cq (102) may be
veparded as equal. We may therefore define
Iyand F; as

Tev of FPeogsure in Tubes

o

(103)

N 2(’7"“1) T.(h )] S__g_/_
Fi(hg:"‘r o Y fa (hg) l 7 (hg)
' izt
-~ Y
: / D
»;,«, (f‘ 7 .’) | 14 t-1) %]‘— \*2
L 5 (+D)

(105)

Thege functions therefore depend only on two
variables, instead of three as in eq (103).

L‘quation’78 ‘shows that the velocity of sound
appropriate to the tube for eq 104 is the Newtonian
velocity, which for & gas is [po/p]”. Equation 81
indicates that the velocity of sound appropriste
to the instrument volume for eq 104 is the “poly-
tropic” velocity or [mpo/po]”. Therefore for a gas,
the attenuation factors may bo computed from

32 . .
x_Ta?ﬁF__ow (%) F, (1,, 1_2) yy

2 (B h)R (B )R () oo

where F,, F;, and hlz—)may be computed from

eq 102 and 105.

It is convenient to utilize one more variable,
the ratio xs;/xr, which from eq 106 has the value

Xr D
—;mALn@ Db,

For a liquid:

It has been stated that v can be satisfactorly
taken as unity for & liquid. This similarly mr.<es
the functions F; and F; (see eq. 103) independent
of g (or really of the Prandtl number). In that
case, the definition of I; and I fov 2 ges (eq.
105) holds for a liquid, if + is teken as unity.
Continuity of definition is thus provided for both
liquid and gas attenuation.

Equation 78 shows that the velocity of sound
appropriate to the tube for eq 104 is the Newtonian

07)

_velocity of sound. However, consistent with eq.

108
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oo and 08 the Newtoman velocity must be based

on thé effective COmpressrbxhtv of the liquid and

" tube. “From eq 82 it is:seen that the velocity cf
‘sbund a%propnate to the instrument. volume,
" € ,_based on_thd real compressibility of
the | .difference between adiabatic,
Lirtropit f',{n'hd isothermal compresslbxhtles is
.aksnraed ne gligible). It has been assumed that
the co’mpresszbnhty of the instrument volume is
- included m the deﬁmtxon of the effective instru-
ment ° volume 1t follows therefore that the
attenuatlon factors for a hqmd can be computed
from

:a(-

1r$mdwﬁﬂ(+% thw”@Dd)fﬂ

S (1 08)

dnd

— LYy Po—=Pa 1 D\
m“*”“h“(ﬁ)(bl'po'ﬂﬁs

xn=32uake (5 ) 77

\._..Y___
,-ll
:3‘

It is now possible to compute the rezl sttenua-
tion and lagging phase angle for the first and
second harmonics. If the attenuation parameters
in eq 95 are regarded as the low frequency param-
eters based on the Poiseuille distribution (i. e. the

‘ones with zero subscripts), then the real attenua-

tion and lagging phase an,,le can be computed
from ;

2 ' ~

- (1190)

g Lo cosh [2)lm]l/2+cos {éxm]1n+(wo) [2xrg]* (sinh [2xr0] "~
| ~sin [2)(1-0]‘/7) +(___) xro(cosh[2xr 72_cog [xXra]'®)
tenh[ I T [ m+( )[x o 172 (tanh [xzn -H:an[ ] )

{tan &), =

The zero subscript means that *hese are the
values for the Poiseuille flow regime. Graphs of
these equations are qmte useful for computing
attenuation. Since xr, i8 proportional to fre-
quency {(see eq 101), while xs/xro is proportional
to the ratio of instrument volume to line volume
(see eq 107), a family of curves of attenuation or
»hase angle plotted against xzo for different values
¥ xnfxro are frequency response curves for
different volume ratios. These curves are pre-
sented as figures 2 and 3.

At higher frequencies, where the functions £
and I, take on values appreciably different from
cnihy, %he oxpressions become extremely com-
plicatod. It is therefore of utiiity tc examine
their Liizh irequency behavior.

AL Wil frogucney, we will uss

ALR Y

the approxi-
*n&.ble,.l

(G )[""’] (COEIE=ED J

2J1(v) l ]
vh@ v v

If we define a new parameter 2 (relaf,ed toh g),

(1D

which characterizes the fluid regime, as

(112)

- ]
41’0

a frequency parameter wL/C, Where

o]

and & volume ratio B dcﬁned as

(113)

) X

L= ’ (1i4)
X70 ie)

_it can be shown that at high frequency

Inurnsl of Hezaorch
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 Xrois small compamd to wL/C."

_ _ 12
T |— 7 ‘
I—Efl a 1+ cos 2%L-—-R (2"’L) sin 2QL Rz ) (1—cos Z“L ]
" 12 (1 +R ) tvan wL
tan ;a_;,‘_= Xm | (115)
o : l-—R —0- tan -7,— '

*-This is th ’solunoﬂ for ‘the undamped acoustxc
resonance of § a tube and xnstrument

In computmg these quantmes in eq 115, it is
assumed that xN is-smaller than xro 24, or that
In the solution for
the undaniped case, the phase angle lag is usually
regarded as zero up to the first resonance. How-
ever, the given expression permits first-order com-

putation of:the phase angle lag valid for vaiues of
xre small compared to wL/C, even though the

overshoot is given s undamped Practically, this
means for values of [ ------ e

or less.
These quantmes arc presented in figures 6 and
7. Tt can be shown that they are valid for values

$or

of the order of one

- of 22100, whereas the low frequency curves (figs.

2 and 3) sre valid for z<1 (see 2q 98). We will
state without proof that the parameter z, which
characterizes the flow regime, is closely related to
a ‘damping coefficient. Figures 2 and 2 will
therefore be referred to as the large damping
curves, and figures 8 and 7 will be referred to as
the undamped curves.

Unfortunately, in many instances, a knowledge

“of the highly damped behavior (figs. 2 and 3) and

the undamped behavior is not sufficient. Curves
“have therefore been drawn for & value of z about
“half-way" between 1 and 100, namely 2=6.25
(see figs. 4 and 5). In order to preserve & scale
proportional to frequency, the quantity xmo is
used as abscissa.
These curves were computed from the formuias

2

B

=[cos.h 2¢,+cos 20,—}—‘203 sinh 2¢;— 2¢, sin 2&,—&- (c3+23) (cosh 2¢,—cos 2¢;)

tanh ¢, tan ¢;+¢; tan cs+c, tanh ¢,

tan So=""——"1 ¢ Tanh 6,—c, tan ¢ (116)
where
' '/2‘ X1o 12
¢;=[1—sin ¢;) 5 Al
. 1 2 [ Xm0 1/2
cr=[1-+sin &' *| 7| F]
=={ i 12 g ] 12y | Xro 2 Xao
c3=={c0s cg[1—sin ¢;}'>—sin ¢4[14-sin cg'?) 5 | Fy o |F|
T0
¢4=(cos ¢s[1+sin ¢;]"?—sin ¢s[1—sin ¢5]'*?) I:xml [] 2 IF!
E:fl‘{"!]xj
S f. g 8
cos 5= ji— esi/q
5 l]‘ll Va/./
ab/
e
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sin c;=l—%’—l .
l L

o8 C.”]’%i:'

e — g2
81N &y m‘l |

B .Equation 116'is valid at all frequencies, and is distortion at low frequencies (neglecting the end
presented without further explanation for com-  effect) sre presented in figures 8 and 9. The for-

leteness and the uss of those with great compu- ~ mule nsed 3n their computation was
‘tational fortitude. R

The amplitude ratio and leading phase engle S L/EN 1B\ eibder
(angle of lead on the time scale of the fundamental :(%’)‘#-2-(\%”) (E;j_—:";—c-c: ); (117)
where both the fundamental and double frequency
wa~es are cosine terms) of the double frequency where

c;-#césh- iZiﬁ]{” cos f2xn]?”7cosh [xel'? cos txm]"’-i-a;ﬁ [xro]2([2) sinh {2xro]'”? cos [2xro]'—
(21" cosh [2xnl sin [2xrel?—sinh [xrol"? 08 [xrol"+ cosh [xrd)"* sin beol'™) +

+ (22Y xo(—sinh (2 in [l *-sinh [xn™ st el

. \X710
symesinh [2xrel!™ sin [Zxroli?—sinh [xrel! sin xrel ™2 fer” (12 sinh [2xro]!” co8 Pacral
(2] cosh [2xsq"® sin (2P —sinh [xn'” cos bxo]?—cosh it sin [xnl )+

2
(%L;) xro (cosh [2xro]'/* cOS [2x70)! A —cosh {xro]'/? cos [xrol' /%)
ca==cosh [xzo]'? cos [xrolt 2+ 22 [x 7o) /2(sinh [x7o]'”* cos [xzo)} 2 —cosh [xreJ!/? sin [xrol' )

XTo

¢,=sinh [xn]'? sin [xm]"’+§—':o [xro]"(sinh [xo]'** cos [xro]'*+cosh [xro]”* sin [xrol' ")

The suthor expresses his appreciation to D. P. Johnson for his assistance in the mathematical
development.

W ASHINGTON, August 2, 1949.

Vailabje
Cop
Y

U. 5. GOVERNMENT PRINTING OFFICE ; O—~1852

ot of Veeaments, T8, Government Printing Offiee

Cobriee (Ooeents

Tresrnodt af Moo -
ez ol o E T e
FOWAVLT 0 s Abhieee BN



{Unpublished Card) UNCLASSIFIED

ATI 155 833 (Request copies from Superintendent of
Documents, Government Printing Office,
Wash., D.C.)

National Bureau of Standards, (Research Paper RP 2115)
Attenuation of Oscillatory Pressures in Instrument Lines - Vol 45
Iberall, Arthur S. July'50 24pp. diagr, graphs
Conduits, Hydraulic Hydraulic and Pneumatic
Pressure oscillations Equipment {20)
Distribution Equipment (4)
UNCLASSIFIED / N
/ / 2/
207,9 /)31435 V-)g



